Окалиностойкость, иначе называемая жаростойкостью, представляет собой способность тех или иных сплавов либо металлов противостоять на протяжении длительного времени при повышенных температурах газовой коррозии. А под жаропрочностью понимают способность металлических материалов не поддаваться разрушению и пластической деформации при высоких температурных режимах работы.
Ненагруженные конструкции, которые применяются при температурах в районе +550 °С в газовой окислительной атмосфере, обычно изготавливаются из жаростойких металлов. К указанным изделиям часто относят элементы нагревательных печей. Сплавы на базе железа при температурах выше указанных 550 градусов склонны к активному окислению, в результате коего на их поверхности формируется оксид феррума. Это соединение характеризуется элементарной кристаллической решеткой с недостатком атомов кислорода, что приводит к появлению окалины хрупкого типа.
Увеличить жаростойкость стали удается тогда, когда в нее вводят такие элементы, как кремний, хром, алюминий.
Они способны создавать с кислородом совершенно другие решетки – с очень плотным и надежным строением. Уровень легированности композиции (количество требуемых добавок) подбирают с учетом температуры, при которой планируется применять изделие, изготовленные из него.
Максимальная жаростойкость присуща материалам на базе никеля (сильхромам). К таковым, в частности, относят следующие марки стали:
36Х18Н25С2
15Х25Т
08Х17Т
15Х6СЮ
Вообще, жаростойкость сталей будет тем выше, чем больше в них имеется хрома. Некоторые марки стальных композиций способны без ухудшения своих начальных свойств работать даже при температурах в районе 1150 °С.
Марки таких сталей идеальны для производства изделий, функционирующих в условиях, когда присутствует явление ползучести и, естественно, повышенные температуры. Ползучестью называют склонность металла к медленной деформации (пластической) при неизменной температуре под влиянием постоянной нагрузки.
Жаропрочность сплавов зависит от вида имеющейся ползучести, которая может быть:
длительной
кратковременной
Последняя устанавливается в ходе специально проводимых анализов на растяжение изделий. Обследования осуществляются в течение непродолжительного времени при заранее заданной температуре в нагревательной печи.
А длительная ползучесть определяется, как вы сами понимаете, на протяжении большего времени воздействия на сталь. И в данном случае главное значение имеет величина предела ползучести – наибольшее напряжение, вызывающее разрушение испытуемого изделия при конкретном времени воздействия и температуре.
А жаростойкие сплавы дополнительно подразделяются еще на:
аустенитно-ферритные или мартенситные
ферритные
Известны следующие марки мартенситных сталей:
3Х13Н7С2 и 4Х9С2 (используются при температурах 850–950° в клапанах автодвигателей)
Х5М, 1Х12H2ВМФ, 1Х8ВФ, Х6СМ, Х5ВФ (применяются для производства узлов и разнообразных деталей, работающих в течение 1000–10000 часов при температурах от 500 до 600°)
Х5 (из них делают трубы для использования при температурах не более 650°)
1Х8ВФ (применяются для изготовления компонентов паровых турбин, функционируют без потери свойств в течение 10000 часов и более при температуре до 500°)
Мартенситные сплавы получаются из перлитных при повышении в последних количества хрома. Непосредственно к перлитным относят следующие жаростойкие и жаропрочные стали: Х13Н7С2, Х7СМ, Х9С2, Х10С2М, Х6СМ, Х6С (то есть все виды хромомолибденовых и хромокремнистых составов). Их закаливают при температурах 950–1100 градусов, а затем (при 8100 градусах) выполняют отпуск стали, что позволяет получить твердые материалы (по шкале HRC – не менее 25 единиц) со структурой сорбита.
Жаростойкие ферритные стали имеют мелкозернистую структуру после их отжига и термообработки. В таких композициях присутствует от 25 до 33 процентов хрома. Используются они для пиролизного оборудования и теплообменников. К ферритным сталям относят далее указанные марки: Х28, Х18СЮ, Х17, Х25Т, 0Х17Т, 1Х12СЮ. Отметим, что их нельзя нагревать более 850 градусов, так как в этом случае изделия станут хрупкими за счет своей крупнозернистой структуры.
Мартенситно-ферритные сплавы хорошо зарекомендовали себя при производстве машиностроительных деталей, которые планируется использовать при 600° на протяжении существенного времени. Такие жаропрочные стали (1Х13, 1Х12В2МФ, 1Х12ВНМФ, Х6СЮ, 2Х12ВМБФР, 1Х11МФ) легируются молибденом, вольфрамом, ванадием, а хрома в них, как правило, содержится от 10 до 14 процентов.
Наибольшей востребованностью пользуются аустенитные стали, структура коих обеспечивается наличием никеля, а жаростойкость – наличием хрома. В подобных композициях иногда встречаются незначительные включения ниобия и титана, углерода в них очень мало. Аустенитные марки при температурах до 1000° успешно противостоят процессу появления окалины и при этом относятся к группе антикоррозионных сталей.
Сейчас чаще всего предприятия используют описываемые материалы, относимые к дисперсионно-твердеющей категории. Их делят на два вида в зависимости от варианта применяемого упрочнителя – интерметаллического либо карбидного. Именно процедура упрочнения придает аустенитным сталям особые свойства, так востребованные промышленностью. Известные сплавы данной группы:
дисперсионно-твердеющие: 0Х14Н28В3Т3ЮР, Х12Н20Т3Р, 4Х12Н8Г8МФБ, 4Х14Н14В2М (оптимальны для изготовления клапанов двигателей транспортных средств и деталей турбин)
гомогенные: 1Х14Н16Б, Х25Н20C2, Х23Н18, Х18Н10T, Х25Н16Г7АР, Х18Н12T, 1Х14Н18В2Б (указанные марки находят свое применение в сфере выпуска арматуры и труб, работающих при больших нагрузках, элементов выхлопных систем, агрегатов сверхвысокого давления)
Аустенитно-ферритные сплавы имеют очень высокую жаропрочность, которая намного больше обычных высокохромистых материалов. Достигается это за счет уникальной стабильности их строения. Такие марки стали нельзя применять для производства нагруженных компонентов из-за их повышенной хрупкости. Зато они прекрасно подходят для изготовления изделий, функционирующих при температурах близких к 1150 °С:
пирометрических трубок (марка – Х23Н13)
печных конвейеров, труб, емкостей для цементации (Х20Н14С2 и 0Х20Н14С2)